Analytics
The mighty size of big data is beyond human comprehension and the first stage hence involves crunching the data into understandable chunks. The purpose of this analytics type is just to summarise the findings and understand what is going on.
Among some frequently used terms, what people call as advanced analytics or business intelligence is basically usage of descriptive statistics (arithmetic operations, mean, median, max, percentage, etc.) on existing data. It is said that 80% of business analytics mainly involves descriptions based on aggregations of past performance. It is an important step to make raw data understandable to investors, shareholders and managers. This way it gets easy to identify and address the areas of strengths and weaknesses such that it can help in strategizing.
The two main techniques involved are data aggregation and data mining stating that this method is purely used for understanding the underlying behavior and not to make any estimations. By mining historical data, companies can analyze the consumer behaviors and engagements with their businesses that could be helpful in targeted marketing, service improvement, etc. The tools used in this phase are MS Excel, MATLAB, SPSS, STATA, etc.
0 Comments:
Post a Comment